252M 6 SO
this site the web

UNIDAD 6 "ADMINISTRADOR DE ARCIVOS"

6.1 sistema de archivos

Los sistemas de archivos (filesystem en inglés), estructuran la información guardada en una unidad de almacenamiento (normalmente un disco duro de una computadora), que luego será representada ya sea textual o gráficamente utilizando un gestor de archivos. La mayoría de los sistemas operativos poseen su propio sistema de archivos.
Lo habitual es utilizar dispositivos de almacenamiento de datos que permiten el acceso a los datos como una cadena de bloques de un mismo tamaño, a veces llamados sectores, usualmente de 512 bytes de longitud. El software del sistema de archivos es responsable de la organización de estos sectores en archivos y directorios y mantiene un registro de qué sectores pertenecen a qué archivos y cuáles no han sido utilizados.

El sistema de archivos está relacionado especialmente con la administración del espacio de almacenamiento secundario, fundamentalmente con el almacenamiento de disco.
Una forma de organización de un sistema de archivos puede ser la siguiente:
Se utiliza una “raíz ” para indicar en qué parte del disco comienza el “directorio raíz ”.
El “directorio raíz ” apunta a los “directorios de usuarios”.
Un “directorio de usuario” contiene una entrada para cada uno de los archivos del usuario.
Cada entrada de archivo apunta al lugar del disco donde está almacenado el archivo referenciado.
Los nombres de archivos solo necesitan ser únicos dentro de un directorio de usuario dado.
El nombre del sistema para un archivo dado debe ser único para el sistema de archivos.
En sistemas de archivo “jerárquicos” el nombre del sistema para un archivo suele estar formado como el “nombre de la trayectoria” del directorio raíz al archivo.

7.2.9 PENETRACIÓN AL SISTEMA OPERATIVO

La penetración definitiva puede consistir en cambiar el bit de estado de la máquina del estado problema al estado supervisor; el intruso podrá así ejecutar instrucciones privilegiadas para obtener acceso a los recursos protegidos por el S. O.
Los estudios de penetración están diseñados para:
Determinar si las defensas de un sistema contra ataques de usuarios no privilegiados son adecuadas.
Descubrir deficiencias de diseño para corregirlas.
El control de entrada / salida es un área favorita para intentar la penetración a un sistema, ya que los canales de entrada / salida tienen acceso al almacenamiento primario y por consiguiente pueden modificar información importante.

7.2.8 CRIPTOGRAFIA SISTEMAS OPERATIVOS

Criptografía
El uso creciente de las redes de computadoras y la importancia del trafico cursado hace necesario proteger a los datos
La Oficina Nacional de Estándares de EE. U. (NBS) ha adoptado la norma de cifrado de datos (DES) para la transmisión de información federal delicada.
La criptografía es el uso de la transformación de datos para hacerlos incomprensibles a todos, excepto a los usuarios a quienes están destinados.
El problema de la intimidad trata de cómo evitar la obtención no autorizada de información de un canal de comunicaciones.
El problema de la autentificación trata sobre cómo evitar que un oponente:
Modifique una transmisión.
Le introduzca datos falsos.
El problema de la disputa trata sobre cómo proporcionar al receptor de un mensaje pruebas legales de la identidad del remitente, que serían el equivalente electrónico de una firma escrita.
Un Sistema de Intimidad Criptográfica
El remitente desea transmitir cierto mensaje no cifrado (texto simple) a un receptor legítimo:
La transmisión se producirá a través de un canal inseguro:
o Se supone que podrá ser verificado o conectado mediante un espía.
El remitente pasa el texto simple a una unidad de codificación que lo transforma en un texto cifrado o criptograma:
No es comprensible para el espía.
Se transmite en forma segura por un canal inseguro.
El receptor pasa el texto cifrado por una unidad de descifrado para regenerar el texto simple.
Criptoanálisis
Es el proceso de intentar regenerar el texto simple a partir del texto cifrado, pero desconociendo la clave de ciframiento:
Es la tarea del espía o criptoaºnalista:
o Si no lo logra, el sistema criptográfico es seguro.
Sistemas de Clave Pública
La distribución de claves de un sistema criptográfico debe hacerse por canales muy seguros.
Los sistemas de clave pública rodean el problema de distribución de claves:
Las funciones de cifrado y descifrado están separadas y utilizan distintas claves.
No es computacionalmente posible (en un tiempo “razonable”) determinar la clave de desciframiento “D” a partir de la clave de ciframiento “C”.
“C” puede hacerse pública sin comprometer la seguridad de “D”, que permanece privada:
o Se simplifica el problema de la distribución de claves.
Firmas Digitales
Para que una firma digital sea aceptada como sustituta de una firma escrita debe ser:
Fácil de autentificar (reconocer) por cualquiera.
Producible únicamente por su autor.
En los criptosistemas de clave pública el procedimiento es:
El remitente usa la clave privada para crear un mensaje firmado.
El receptor:
o Usa la clave pública del remitente para descifrar el mensaje.
o Guarda el mensaje firmado para usarlo en caso de disputas.
Para mayor seguridad se podría actuar como sigue:
El remitente puede codificar el mensaje ya cifrado utilizando la clave pública del receptor.
La clave privada del receptor permite recuperar el mensaje cifrado firmado.
La clave pública del remitente permite recuperar el texto simple original.
Aplicaciones
La criptografía es especialmente útil en los sistemas multiusuario y en las redes de computadoras.
Se debe utilizar para proteger a las contraseñas, almacenándolas cifradas.
Se puede utilizar también para proteger todos los datos almacenados en un sistema de computación; se debe considerar el tiempo de cifrado / descifrado.
También es aplicable en los protocolos de redes de capas, que ofrecen varios niveles de cifrado.
En el cifrado de enlace la red asume la responsabilidad de cifrado / descifrado de cada nodo:
Los datos se transmiten cifrados entre los nodos.
En cada nodo se descifran, se determina a dónde transmitirlos y se los vuelve a cifrar.

6.2 jerarquia de datos

Una jerarquía de datos maestros define las relaciones jerárquicas entre los valores de característica. El concepto de jerarquía se basa en los conceptos siguientes:

Cada valor de característica contenido en la jerarquía está representado por un nodo de jerarquía. Si un nodo es superior a otros nodos subordinados, se le denomina nodo padre. Si un nodo no tiene nodos subordinados, se le denomina nodo final.

Esta clasificación sólo se refiere a la posición del nodo en la jerarquía y a la existencia o no existencia de nodos subordinados. También es importante una clasificación posterior de la relación con los datos maestros.

Un nodo cuyo valor de característica está contenido en los datos maestros se denomina nodo contabilizable. Dado que la coherencia entre los datos maestros y los datos variables se verifica al contabilizar los datos, las contabilizaciones sólo se podrán efectuar en las características que estén contenidas en los datos maestros.

Un nodo cuyo valor de característica no está contenido en los datos maestros se denomina nodo no contabilizable. Los nodos de este tipo se almacenan en las tablas del EC-EIS con textos apropiados y se utilizan como nodos padre dentro de la jerarquía. Para actualizar estos nodos se deberán utilizar las funciones de actualización de jerarquía o bien seleccionar Datos maestros ® Jerarquía de datos maestros ® Nodos no contabiliz. en el menú del área funcional.

La diferencia entre nodos contabilizables y no contabilizables no tiene nada que ver directamente con su posición en la jerarquía como nodos padre o nodos finales. Son posibles las siguientes combinaciones: nodo padre contabilizable, nodo final contabilizable, nodo padre no contabilizable y nodo final no contabilizable. Estos cuatro tipos de nodo pueden existir en una jerarquía de datos maestros.

7.2.7 SEGURIDAD POR HARDWARE Y SOFTWARE

Seguridad Por Hardware
Existe una tendencia a incorporar al hardware funciones del S. O. :
Las funciones incorporadas al hardware:
o Resultan mucho más seguras que cuando son asequibles como instrucciones de software que pueden ser modificadas.
o Pueden operar mucho más rápido que en el software:
+ Mejorando la performance.
+ Permitiendo controles más frecuentes
Al disminuir los costos del equipo, se hace cada vez mas deseable incorporar algunas funciones del sistema operativo en el hardware. Asi, la seguridad de estas funciones es mayor, pues no están accesibles como instrucciones de programa, las cuales se pueden modificar con facilidad. Las funciones incorporadas en el equipo se ejecutan mucho mas rapido que en software; diversas funciones de supervisión se pueden realizar con mas frecuencia.

7.2.6 NUCLEOS DE SEGURIDAD DE SISTEMAS OPERATIVOS

Núcleos de Seguridad
Es mucho más fácil hacer un sistema más seguro si la seguridad se ha incorporado desde el principio al diseño del sistema [7, Deitel].
Las medidas de seguridad deben ser implementadas en todo el sistema informático.
Un sistema de alta seguridad requiere que el núcleo del S. O. sea seguro.
Las medidas de seguridad más decisivas se implementan en el núcleo, que se mantiene intencionalmente lo más pequeño posible.
Generalmente se da que aislando las funciones que deben ser aseguradas en un S. O. de propósito general a gran escala, se crea un núcleo grande

7.2.5- CONTROLES DE ACCESO DE SISTEMAS OPERATIVOS

Lo fundamental para la seguridad interna es controlar el acceso a los datos almacenados
Los derechos de acceso definen qué acceso tienen varios sujetos o varios objetos.
Los sujetos acceden a los objetos.
Los objetos son entidades que contienen información.

7.2.4 AUDITORIA SISTEMAS OPERATIVOS

La auditoría suele realizarse a posteriori en sistemas manuales , es decir que se examinan las recientes transacciones de una organización para determinar si hubo ilícitos.
La auditoría en un sistema informático puede implicar un procesamiento inmediato, pues se verifican las transacciones que se acaban de producir.

7.2.3 PROTECCION SISTEMAS OPERATIVOS:

Existen varios mecanismos que pueden usarse para asegurar los archivos, segmentos de memoria, CPU, y otros recursos administrados por el Sistema Operativo. Por ejemplo, el direccionamiento de memoria asegura que unos procesos puedan ejecutarse solo dentro de sus propios espacios de dirección. El times asegura que los procesos no obtengan el control de la CPU en forma indefinida. La protección se refiere a los mecanismos para controlar el acceso de programas, procesos, o usuarios a los recursos definidos por un sistema de computación. Seguridad es la serie de problemas relativos a asegurar la integridad del sistema y sus datos. Hay importantes razones para proveer protección. La más obvia es la necesidad de prevenirse de violaciones intencionales de acceso por un usuario. Otras de importancia son, la necesidad de asegurar que cada componente de un programa, use solo los recursos del sistema de acuerdo con las políticas fijadas para el uso de esos recursos. Un recurso desprotegido no puede defenderse contra el uso no autorizado o de un usuario incompetente. Los sistemas orientados a la protección proveen maneras de distinguir entre uso autorizado y desautorizado.

7.2.2- VIGILANCIA SISTEMAS OPERATIVOS

La vigilancia tiene que ver con:
La verificación y la auditoría del sistema.
La autentificación de los usuarios.
Los sistemas sofisticados de autentificación de usuarios resultan muy difíciles de evitar por parte de los intrusos.
Un problema existente es la posibilidad de que el sistema rechace a usuarios legítimos:
Un sistema de reconocimiento de voz podría rechazar a un usuario legítimo resfriado.
Un sistema de huellas digitales podría rechazar a un usuario legítimo que tenga una cortadura o una quemadura.

7.2 SEGURIDAD DE SISTEMAS OPERATIVOS

El ambiente de seguridad Sistemas Operativos.
Los términos seguridad y protección se utilizan en forma indistinta. Sin embargo, es útil hacer una distinción entre los problemas generales relativos a la garantía de que los archivos no sea leídos o modificados por personal no autorizado, lo que incluye aspectos técnicos, de administración, legales y políticos, por un lado y los sistemas específicos del sistema operativo utilizados para proporcionar la seguridad, por el otro. Para evitar la confusión, utilizaremos el término seguridad para referirnos al problema general y el término mecanismo de protección para referirnos a los mecanismos específicos del sistema operativo utilizado para resguardar la información de la computadora. Sin embargo, la frontera entre ellos no está bien definida. Primero nos fijaremos en la seguridad; más adelante analizaremos la protección.
La seguridad tiene muchas facetas. Dos de las más importantes son la pérdida de datos y los intrusos. Algunas de las causas más comunes de la perdida de datos son:
1. Actos divinos: Incendios, inundaciones, terremotos, guerras, revoluciones o ratas que roen las cintas o discos flexibles.
2. errores de Hardware o Software: Mal funcionamiento de la CPU, discos o cintas ilegibles, errores de telecomunicación o errores en el programa.
3. Errores Humanos: Entrada incorrecta de datos, mal montaje de las cintas o el disco, ejecución incorrecta del programa, perdida de cintas o discos.
La mayoría de estas causas se pueden enfrentar con el mantenimiento de los respaldos adecuados; de preferencia, en un lugar alejado de los datos originales.
Un problema más interesante es que hacer con los intrusos. Estos tienen dos variedades. Los intrusos pasivos solo desean leer archivos que no están autorizados a leer. Los intrusos activos son más crueles: Desean hacer cambios no autorizados a los datos. Si se desea diseñar un sistema seguro contra los intrusos, es importante tener en cuenta el tipo de intruso con el que se desea tener protección. Algunas de las categorías comunes son:
1. Curiosidad casual de usuarios no técnicos. Muchas personas tienen en sus escritorios terminales para sistemas con tiempo compartido y, por la naturaleza humana, algunos de ellos leerán el correo electrónico de los demás u otros archivos, si no existen barreras en frente de ellos. Por ejemplo la mayoría de los sistema UNÍS tienen pre definido que todos los archivos se pueden leer de manera pública.
2. Conocidos husmeando. Algunos estudiantes, programadores de sistemas, operadores y demás personal técnico consideran como un reto personal romper la seguridad del sistema de cómputo local. A menudo son muy calificados y están dispuestos a invertir una cantidad sustancial de su tiempo en este esfuerzo.
3. Un intento deliberado de hacer dinero. Algunos programadores en banco han intentado penetrar un sistema bancario con el fin de robarle al banco. Los esquemas han variado desde cambiar el software para truncar y no redondear el interés, para quedarse con una pequeña fracción de dinero, hasta sacar dinero de las cuentas que no se han utilizado en años o el “correo negro” .
4. Espionaje comercias o militar. El espionaje indica un intento serio y fundamentado por parte de un competidor u otro país para robar programas, secretos comerciales, patentes, tecnología, diseño de circuitos, planes de comercialización, etc. A menudo, este intento implica la cobertura de cables o el levantamiento de antenas hacia la computadora con el fin de recoger su radiación electromagnética.
Debe quedar claro que el intento por mantener la KGB lejos de los secretos militares es un poco distinto del intento por evitar que los estudiantes inserten un mensaje gracioso en el sistema. La cantidad de esfuerzo que alguien pone en la seguridad y la protección depende claramente de quién se piensa sea el enemigo.

UNIDAD 7 MEDICION y DESEMPEÑO

7.1 MEDICION DESEMPEÑO

Un sistema operativo es en primer lugar un administrador de recursos, por ello es importante poder determinar con qué efectividad administra sus recursos un sistema determinado Deitel
Generalmente hay un gran potencial de mejora en el uso de los recursos existentes, pero:
Muchas instalaciones realizan muy poco o ningún control y evaluación.
Cuando se hacen controles específicos se generan grandes cantidades de datos que muchas veces no se sabe cómo interpretar.
Las instalaciones rara vez cuentan con personal versado en las técnicas de análisis de rendimiento.
Durante los primeros años del desarrollo de las computadoras el hardware representaba el costo dominante de los sistemas y debido a ello los estudios de rendimiento se concentraban en el hardware.
Actualmente y según la tendencia apreciable:
El software incluye el S. O. de multiprogramación / multiproceso, sistemas de comunicaciones de datos, sistemas de administración de bases de datos, sistemas de apoyo a varias aplicaciones, etc.
El software frecuentemente oculta el hardware al usuario creando una máquina virtual, que está definida por las características operativas del software.
Un software deficiente y / o mal utilizado puede ser causa de un rendimiento pobre del hardware, por lo tanto es importante controlar y evaluar el rendimiento del hardware y del software.
Técnicas de Evaluación del Rendimiento:
Tiempos
Los tiempos proporcionan los medios para realizar comparaciones rápidas del hardware
Una posible unidad de medida es el “mips”: millón de instrucciones por segundo.
Los tiempos se usan para comparaciones rápidas; se utilizan operaciones básicas de hardware.
Mezclas de instrucciones
Se usa un promedio ponderado de varios tiempos de las instrucciones más apropiadas para una aplicación determinada; los equipos pueden ser comparados con mayor certeza de la que proporcionan los tiempos por sí solos.
Son útiles para comparaciones rápidas del hardware.
Programas del núcleo
Un programa núcleo es un programa típico que puede ser ejecutado en una instalación.
Se utilizan los tiempos estimados que suministran los fabricantes para cada máquina para calcular su tiempo de ejecución.
Se corre el programa típico en las distintas máquinas para obtener su tiempo de ejecución.
Pueden ser útiles para la evaluación de ciertos componentes del software, por ej. Compiladores; pueden ayudar a determinar qué compilador genera el código más eficiente.
Modelos analíticos
Son representaciones matemáticas de sistemas de computación o de componentes de sistemas de computación.
Generalmente se utilizan los modelos de:
Teoría de colas.
Procesos de Markov.
Requieren un gran nivel matemático del evaluador y son confiables solo en sistemas sencillos, ya que en sistemas complejos los supuestos simplificadores pueden invalidar su utilidad y aplicabilidad.
Embotellamientos y Saturación
Los recursos administrados por los S. O. se acoplan e interactúan de maneras complejas para afectar al total de la operación del sistema [7, Deitel].
Ciertos recursos pueden sufrir embotellamientos que limitan el rendimiento del sistema:
No pueden realizar su parte del trabajo.
Otros recursos pueden estar con exceso de capacidad.
Un embotellamiento tiende a producirse en un recurso cuando el tráfico de trabajos o procesos de ese recurso comienza a alcanzar su capacidad límite:
El recurso se encuentra saturado.
Los procesos que compiten por el recurso comienzan a interferirse unos a otros.

6.3 tipos de archivos

En computación existen básicamente dos tipos de archivos, los archivos ascii y los archivos binarios. El vocablo ascii es un acrónimo para American Standard Code for Information Interchange. Es un estándar que asigna un valor numérico a cada carácter, con lo que se pueden representar los documentos llamados de Texto Plano, es decir, los que son legibles por seres humanos. Los archivos binarios son todos los demás. Como ejemplos tenemos:
Archivos binarios:
•Archivos fuente: .f, .c, .p
•Formatos de texto: .tex, .txt, .html •Formatos de intercambio: .rtf, .ps, .uu
Dentro de los archivos ASCII de uso común por los programas de bioinformática están los siguientes:
• De secuencias: .seq • De secuencias múltiples: .aln, .msf (Multiple Sequence Format, secuencias alineadas), .rsf (Rich Sequence Format, estos archivos pueden incluir una o más secuencias relacionadas o no)

Audio: Los archivos de audio son todos los que contienen sonidos (no solo música). Las diferentes extensiones atienden al formato de compresión utilizado para convertir el sonido real en digital.
Video: Los formatos de video no sólo continen imágenes sino también el sonido que las acompaña. Es bastante habitual que al intentar visualizar un vídeo no podamos ver la imagen aunque sí oigamos el sonido. Esto es debido al formato de compresión utilizado en ellos que puede no ser reconocido por nuestro ordenador, por ello siempre se ha de tener actualizados los codecs de cada uno de los formatos.
Comprimidos: Los formatos de compresión son de gran utilidad a la hora del almacenamiento de información ya que hacen que esta ocupe el menor espacio posible y que se puedan reunir muchos ficheros en uno sólo.
Images: Poco hay que decir de las imágenes y de sus formatos salvo que cada uno de ellos utiliza un método de representación y que algunos ofrecen mayor calidad que otros. También cabe destacar que muchos programas de edición gráfica utilizan sus propios formatos de trabajo con imágenes.
Texto: Dentro de los documentos de texto hemos de diferenciar entre el texto plano y el enriquecido. Es decir, entre los formatos que sencillamente guardan las letras (txt, log…) y los que podemos asignarles un tamaño, fuente, color, etc.

6.4 interfaz con usuario

La interfaz de usuario es el medio con que el usuario puede comunicarse con una máquina, un equipo o una computadora, y comprende todos los puntos de contacto entre el usuario y el equipo.
Funciones principales Sus principales funciones son los siguientes:
Puesta en marcha y apagado Control de las funciones manipulables del equipo Manipulación de archivos y directorios Herramientas de desarrollo de aplicaciones Comunicación con otros sistemas Información de estado Configuración de la propia interfaz y entorno Intercambio de datos entre aplicaciones Control de acceso Sistema de ayuda interactivo.
Tipos de interfaces de usuario
Según la forma de interactuar del usuario Atendiendo a como el usuario puede interactuar con una interfaz, nos encontramos con varios tipos de interfaces de Usuario:
Interfaces alfanuméricas (intérpretes de mandatos) que solo presentan texto. Interfaces gráficas de usuario (GUI, Graphics User Interfaces), las que permiten comunicarse con el ordenador de una forma muy rápida e intuitiva representando gráficamente los elementos de control y medida. Interfaces táctiles, que representan gráficamente un “panel de control” en una pantalla sensible que permite interaccionar con el dedo de forma similar a si se accionara un control físico.

6.4.1 el sistema de archivos visto por el usuario

Aunque los discos rígidos pueden ser muy chicos, aún así contienen millones de bits, y por lo tanto necesitan organizarse para poder ubicar la información. Éste es el propósito del sistema de archivos. Recuerde que un disco rígido se conforma de varios discos circulares que giran en torno a un eje. Las pistas (áreas concéntricas escritas a ambos lados del disco) se dividen en piezas llamadas sectores (cada uno de los cuales contiene 512 bytes). El formateado lógico de un disco permite que se cree un sistema de archivos en el disco, lo cual, a su vez, permitirá que un sistema operativo (DOS, Windows 9x, UNIX, ...) use el espacio disponible en disco para almacenar y utilizar archivos. El sistema de archivos se basa en la administración de clústers, la unidad de disco más chica que el sistema operativo puede administrar.
Un clúster consiste en uno o más sectores. Por esta razón, cuanto más grande sea el tamaño del clúster, menores utilidades tendrá que administrar el sistema operativo...
Por el otro lado, ya que un sistema operativo sólo sabe administrar unidades enteras de asignación (es decir que un archivo ocupa un número entero de clústers), cuantos más sectores haya por clúster, más espacio desperdiciado habrá. Por esta razón, la elección de un sistema de archivos es importante.

6.4.2 diseño del sistema de archivos

El diseño del sistema es la estrategia de alto nivel para resolver problemas y construir una solución. Éste incluye decisiones acerca de la organización del sistema en subsistemas, la asignación de subsistemas a componentes hardware y software, y decisiones fundamentales conceptuales y de políticaque son las que constituyen un marco de trabajo para el diseño detallado
La organización global del sistema es lo que se denomina la arquitectura del sistema. Existe un cierto número de estilos frecuentes de arquitectura, cada uno de los cuales es adecuado para ciertas clases de aplicaciones. Una forma de caracterizar una aplicación es por la importancia relativa de sus modelos de objetos, dinámico y funcional. Las distintas arquitecturas ponen distintos grados de énfasis en los tres modelos.
El diseño de sistemas es la primera fase de diseño en la cual se selecciona la aproximación básica para resolver el problema. Durante el diseño del sistema, se decide la estructura y el estilo global. La arquitectura del sistema es la organizaciónglobal del mismo en componentes llamados subsistemas. La arquitectura proporciona el contexto en el cual se toman decisiones más detalladas en una fase posterior del diseño. AL tomar decisiones de alto nivel que se apliquen a todo el sistema, el diseñador desglosa el problema en subsistemas, de tal manera que sea posible realizar más trabajo por parte de varios diseñadores que trabajarán independientemente en distintos subsistemas.

6.4.3 servidor de archivos

Tipo de servidor en una red de ordenadores cuya función es permitir el acceso remoto a archivos almacenados en él o directamente accesibles por este. En principio, cualquier ordenador conectado a una red con un software apropiado, puede funcionar como servidor de archivos. Desde el punto de vista del cliente de un servidor de archivos, la localización de los archivos compartidos es transparente. O sea, normalmente no hay diferencias perceptibles si un archivo está almacenado en un servidor de archivos remoto o en el disco de la propia máquina.
Un servidor de archivos proporciona una ubicación central en la red, en la que puede almacenar y compartir los archivos con usuarios de la red. Cuando los usuarios necesiten un archivo importante, como un plan de proyecto, podrán tener acceso al archivo del servidor de archivos en lugar de tener que pasarlo entre distintos equipos. Si los usuarios de la red necesitan tener acceso a los mismos archivos y aplicaciones accesibles a través de la red.
Si tiene toda la información de la empresa almacenada en su servidor de archivos, el respaldo de este es mas simple de realizar
Algunos protocolos comúnmente utilizados en servidores de archivos:
SMB/CIFS (Windows, Samba en Unix)
NFS (Unix)

6.4.4 seguridad en archivos

Una norma básica de seguridad radica en la asignación a cada usuario sólo de los permisos necesarios para poder cubrir las necesidades de su trabajo sin poner en riesgo el trabajo de los demás.
¿Como se puede poner en riesgo el correcto funcionamiento del sistema?
Podemos apuntar algunas ideas: violando la privacidad de la información, obteniendo unos privilegios que no le correspoden a un usuario, haciendo un uso desmedido de los recursos o modificando información legítima contenida en una máquina, como pueden ser el contenido de una página web o una base de datos.
¿Cómo podemos mantener un almacenamiento seguro?
La respuesta no puede ser concreta, pero sí que se pueden tomar ciertas medidas que garanticen un mínimo de seguridad y funcionalidad. Si Vd. va a administrar un sistema Linux para dar servicio a diversos usuarios, debería tener algunas nociones sobre sistemas de ficheros, que pasamos a explicar a continuación.

6.4.5 mecanismos de proteccion de archivos

Dominios de Protección
Muchos objetos del sistema necesitan protección, tales como la cpu, segmentos de memoria, unidades de disco, terminales, impresoras, procesos, archivos, bases de datos, etc.
Cada objeto se referencia por un nombre y tiene habilitadas un conjunto de operaciones sobre él. Un dominio es un conjunto de parejas (objeto, derechos):
• Cada pareja determina:
• Un objeto.
• Un subconjunto de las operaciones que se pueden llevar a cabo en él.
Un derecho es el permiso para realizar alguna de las operaciones. Es posible que un objeto se encuentre en varios dominios con “distintos” derechos en cada dominio.
Un proceso se ejecuta en alguno de los dominios de protección:
• Existe una colección de objetos a los que puede tener acceso.
• Cada objeto tiene cierto conjunto de derechos.
Los procesos pueden alternar entre los dominios durante la ejecución. Una llamada al S. O. provoca una alternancia de dominio. En algunos S. O. los dominios se llaman anillos.

6.4.6 implementacion sistemas de archivos

Implantación: estos archivos podrían implantarse como parte de un sistema operativo distribuido, haciendo el papel de una capa de software cuya tarea es administrar la comunicación entre los sistemas operativos y los sistemas de archivos convencionales. Las características propias de un SAD son Ia multiplicidad y autonomía de los clientes y servidores en el sistema.
La implantación de un sistema distribuido de archivos incluye aspectos tales como
El uso de los archivos.
La estructura del sistema.
El ocultamiento.
La duplicación o réplica.
El control de la concurrencia
El uso de archivos generalmente se utiliza antes de implantar un sistema de archivo, y primero se realiza un analisis de patrones de uso, para realizar dicho analisis es necesario tomar las siguientes mediciones: Estatica (Representan una toma instantanea del sistema en un momento dado y comprende la distribución de tamaño de archivo) y Dinamica(Registra toda las operaciones que modifican el sistema de archivos)

6.5

Mecanismo
Las llamadas al sistema comúnmente usan una instrucción especial de la CPU que causa que el procesador transfiera el control a un código privilegiado, previamente especificado por el mismo código. Esto permite al código privilegiado especificar donde va a ser conectado así como el estado del procesador.
Cuando una llamada al sistema es invocada, la ejecución del programa que invoca es interrumpida y sus datos son guardados, normalmente en su PCB, para poder continuar ejecutándose luego. El procesador entonces comienza a ejecutar las instrucciones de código de alto nivel de privilegio, para realizar la tarea requerida. Cuando esta finaliza, se retorna al proceso original, y continúa su ejecución. El retorno al proceso demandante no obligatoriamente es inmediato, depende del tiempo de ejecución de la llamada al sistema y del algoritmo de planificación de CPU.

Es la Forma como se traslada la informacion, la recuperacion y el almacenamiento entre los datos de diferentes terminales

6.6 tipos de interfaz

En los primeros días de las computadoras (antes de pantallas gráficas, el ratón, etc.) era la única forma realista de interfaz. El usuario podía comunicarse con el sistema especifico con ordenes de la forma indicada en la figura. Aunque es una forma concisa, es muy propensa a errores, muy estricta y difícil de aprender.
+Interfaz de menú simple
Es una variante de la forma anterior, se presenta al usuario una lista de opciones y la selección se realiza por medio de un número, letra o un código en particular. Ofrece al usuario un contexto global y tiene menos porcentaje de errores que el anterior, pero su uso puede llegar a ser tedioso. Este es el caso de las opciones del ejemplo de la figura, que incluyen subopciones (que a su vez puede incluir otras opciones) dentro de las opciones principales.
interfaz orientada a ventanas
A medida que el hardware se ha hecho mas eficiente y los ingenieros de software han aprendido mas sobre los factores humanos, las técnicas de interfaz evolucionaron, llegando a lo que se conoce como interfaces de la tercera generación. Ofrece al usuario las siguiente ventajas:
Se puede visualizar diferentes tipos de información simultáneamente El esquema de menús desplegables permite realizar muchas tareas interactivas diferentes. Se realizan tareas de control y de dialogo en forma sencilla. La utilización de menús desplegables, botones y técnicas de presentación reducen el manejo del teclado.

6.7 procedimientos y control de flujo

BASIC no tiene una biblioteca externa estándar como otros lenguajes como C. En cambio, el intérprete (o compilador) contiene una biblioteca incorporada de procedimientos intrínsecos. Estos procedimientos incluyen la mayoría de las herramientas que un programador necesita para aprender a programar y escribir aplicaciones sencillas, así como funciones para realizar cálculos matemáticos, manejar cadenas, entrada desde la consola, gráficos y manipulación de archivos.

Mientras que las funciones que devuelven un valor son una adición relativamente reciente a los dialectos de BASIC, muchos de los primeros sistemas soportaban la definición de funciones matemáticas en línea, con DEF FN (“DEFine FunctioN” [DEFinir FuncióN]). El Dartmouth BASIC original también soportaba funciones al estilo de Algol, así como subrutinas desde sus primeros tiempos.

Con la inclusión posterior de enunciados GOSUB (Go-Subroutine) se ramificaba el programa a especies de subrutinas, sin parámetros o variables locales. Ellas proveen una forma de implementar una suerte de procedimientos (realmente no lo son, sencillamente es un "salto y retorno") y estructurar más el programa, evitando bastante la utilización de la dañina sentencia GOTO.
 

W3C Validations

Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Morbi dapibus dolor sit amet metus suscipit iaculis. Quisque at nulla eu elit adipiscing tempor.

Usage Policies